In the conventional synthesis of aqueous ZnSe quantum dots (QDs), highly reactive Se monomers are rapidly injected into a Zn-thiol complexes solution at room temperature, resulting in a poor excitionic luminescence and a serious trap emission of as-prepared ZnSe QDs. In this paper, we develop a novel cation-inverting-injection method to prepare aqueous ZnSe QDs with a bright excitionic luminescence. In this method, highly reactive Se monomers are first diluted in the reaction solution, followed by low-reaction Zn-thiol complexes slowly dropped at a high reaction temperature (90 °C). The inverting monomer injection order, the suppressed monomer reactivity and the high nucleation temperature in the cation-inverting-injection method can contribute to low-concentration but high-quality ZnSe nuclei, thereby promoting the formation of ZnSe QDs with large-sized particles, a high excitionic emission and a weak trap emission. As-prepared ZnSe QDs exhibit an intense deep-blue excitionic em...
Yanbin Wang, Chunlei Wang, Shuhong Xu, Zhuyuan Wang and Yiping Cui
Click for full article
Yanbin Wang, Chunlei Wang, Shuhong Xu, Zhuyuan Wang and Yiping Cui
Click for full article
No comments:
Post a Comment