Background: Active targeting endocytosis mediated by the specific interaction between folic acid and its receptor has been a hotspot in biological therapy of many human cancers. Various studies have demonstrated that folate and its conjugates could facilitate the chemotherapeutic drug delivery into folate receptor (FR)-positive tumor cells in vitro and in vivo. In order to utilize FA-FR binding specificity to achieve targeted delivery of drugs into tumor cells, we prepared Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-?-cyclodextrin nanoparticles for enhancing drug delivery in cancer cells. On this context, the aim of our study was to develop a novel nano-delivery system for promoting tumor-targeting drug delivery in folate receptor-positive Hela cells. Results: We prepared folic acid (FA)-decorated bovine serum albumin (BSA) conjugated carboxymethyl-?-cyclodextrin (CM-?-CD) nanoparticles (FA-BSA-CM-?-CD NPs) capable of entrapping a hydrophobic Gefitinib. It was observed that nanoparticles are monodisperse and spherical nanospheres with an average diameter of 90.2?nm and negative surface charge of ?18.6?mV. FA-BSA-CM-?-CD NPs could greatly facilitate Gefitinib uptake and enhance the toxicity to folate receptor-positive Hela cells. Under the reaction between FA and FR, Gefitinib loaded FA-BSA-CM-?-CD NPs induced apoptosis of Hela cells through elevating the expression of caspase-3 and inhibited autophagy through decreasing the expressing of LC3. It also confirmed that clathrin-mediated endocytosis and macropinocytosis exerted great influence on the internalization of both NPs. Conclusions: These results demonstrated that FA may be an effective targeting molecule and FA-BSA-CM-?-CD NPs provided a new strategy for the treatment of human cancer cells which over-expressed folate receptors.
Yijie Shi
Click for full article
Yijie Shi
Click for full article
No comments:
Post a Comment