R Herchig, Kimberly Schultz, Kevin McCash and I Ponomareva
Molecular dynamics simulations are used to study the interaction of ferroelectric nanowires with terahertz (THz) Gaussian-shaped pulses of electric field. The computational data indicate the existence of two interaction scenarios that are associated with ‘lossless’ and dissipative, or ‘lossy’, interaction mechanisms. A thermodynamical approach is used to analyze the computational data for a wide range of THz pulses. The analysis establishes the foundation for understanding the nanowires’ response to the THz pulses and reveals the potential of ferroelectric nanowires to function as nanoscale sensors of THz radiation. Various aspects of this THz nanosensing are analyzed and discussed.
Link to full article
Molecular dynamics simulations are used to study the interaction of ferroelectric nanowires with terahertz (THz) Gaussian-shaped pulses of electric field. The computational data indicate the existence of two interaction scenarios that are associated with ‘lossless’ and dissipative, or ‘lossy’, interaction mechanisms. A thermodynamical approach is used to analyze the computational data for a wide range of THz pulses. The analysis establishes the foundation for understanding the nanowires’ response to the THz pulses and reveals the potential of ferroelectric nanowires to function as nanoscale sensors of THz radiation. Various aspects of this THz nanosensing are analyzed and discussed.
Link to full article
No comments:
Post a Comment