The crystal structure of GaP nanowires grown by Au-assisted chemical beam epitaxy was investigated as a function of group V flux and growth temperature. By increasing the tertiarybutyl phosphine flux we obtained nanowires with a stacking defect-free wurtzite crystal structure. Variation of growth temperature also had a profound impact on the crystal structure. Lowering the growth temperature from 600 to 560 °C and keeping constant both triethylgallium and tertiarybutyl phosphine precursor fluxes, the crystal structure of GaP NWs was drastically improved from a highly defective intergrowth of zinc-blende and wurtzite to a wurtzite crystal structure free of stacking defects. These results are compared to current literature on GaP NW growth, and we suggest that the low V/III ratio is the key ingredient for the high crystal quality of our GaP nanowires.
Elena Husanu, Daniele Ercolani, Mauro Gemmi and Lucia Sorba
Click for full article
Elena Husanu, Daniele Ercolani, Mauro Gemmi and Lucia Sorba
Click for full article
No comments:
Post a Comment