Thursday, February 27, 2014

Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases

Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new ‘multi-point cross-correlation’ technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the pr...

Towfiq Ahmed, Jason T Haraldsen, John J Rehr, Massimiliano Di Ventra, Ivan Schuller and Alexander V Balatsky

Click for full article

No comments:

Post a Comment