Thursday, April 24, 2014

High intensity induced photocurrent polarity switching in lead sulfide nanowire field effect transistors

We report an optoelectronic investigation of lead sulfide nanowires (NWs) by scanning photocurrent microscopy. The photocurrent in p-type lead sulfide NW field effect transistors has demonstrated unusually nonlinear dependence on the intensity of local excitation. Surprisingly, the photocurrent polarity can be reversed under high illumination intensity on the order of 100 W cm −2 . The origin of this photocurrent polarity switching is that the photo-injected carriers flip the direction of the electric field near the contact. These observations shed light on the nonlinear optoelectronic characteristics in semiconductor nanostructures and may provide an innovative method for optically tailoring local band structures.

Yiming Yang, Xingyue Peng and Dong Yu

Click for full article

No comments:

Post a Comment