Monday, March 04, 2013

Ultra-sensitive analysis of a cantilevered single-walled carbon nanocone-based mass detector

J W Yan, K M Liew and L H He



The ultra-sensitivity of mass detectors using individual cantilevered single-walled carbon nanocone (SWCNC) resonators is first investigated. A higher-order gradient theory, derived at the atomic level, is applied for modeling SWCNC resonators. Numerical simulations using a mesh-free computational framework based on moving Kriging interpolation are conducted to investigate the mass sensitivity of cantilevered SWCNC resonators with extra mass loading as well as with equivalent single-walled carbon nanotube (SWCNT) resonators. Comparison of the magnitude of resonant frequency shifts, the key criterion for mass sensitivity, of these two kinds of resonators demonstrates a far higher mass sensitivity for SWCNC resonators than for SWCNT resonators, thus suggesting a new method for ultra-sensitive mass detection via SWCNC resonators. The dependence of the mass sensitivity of SWCNC resonators on height and top radii has been examined. A reduction in the height of SWCNC resonators gives r...



Link to full article

No comments:

Post a Comment